Casprod
  • About
  • Universities
    • University of Ljubljana, Faculty of Mechanical Engineering
    • University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture
    • TU Wien, Faculty of Mechanical and Industrial Engineering
  • Curriculum structure
    • 1ST SEMESTER: UNIVERSITY OF ZAGREB
      • Computer Integrated Product Development
      • Mechatronics and Sensors Sytems
      • Digital Manufacturing Systems
      • Advanced Engineering Informatics
      • Innovation Management in Product Development
      • Design for Sustainability
      • Quality Management in Engineering
      • Biomimetic Systems and Humanoid Robotics
      • Advanced Materials
      • Electric and Hybrid Vehicles
      • Engineering Logistics
    • 2ND SEMESTER: UNIVERSITY OF LJUBLJANA
      • Data modelling
      • Big data analysis
      • Information Security and Privacy
      • Assembly and Handling Systems
      • Engineering design techniques
      • Mechatronic prototyping
      • Multisensory systems, machine vision
      • Designing with non-metal materials
      • Distributed systems
    • 3RD SEMESTER: TU WIEN
      • Virtual Product Development
      • Industrial Manufacturing Systems
      • Industrial Information Systems
      • Controlling
      • Innovation Theory
      • Project Work Virtual Product Development
      • Strategic Management
      • Knowledge Management in Cyber Physical Production Systems
      • Communication and Rhetoric
      • Human Resource Management and Leadership
      • Design of Informational Systems for Production Management
      • Marketing Basics
  • e-Classroom
  • Contacts
  • Intellectual outputs
The rise of smart products
 
Casprod
Casprod
  • About
  • Universities
    • University of Ljubljana, Faculty of Mechanical Engineering
    • University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture
    • TU Wien, Faculty of Mechanical and Industrial Engineering
  • Curriculum structure
    • 1ST SEMESTER: UNIVERSITY OF ZAGREB
      • Computer Integrated Product Development
      • Mechatronics and Sensors Sytems
      • Digital Manufacturing Systems
      • Advanced Engineering Informatics
      • Innovation Management in Product Development
      • Design for Sustainability
      • Quality Management in Engineering
      • Biomimetic Systems and Humanoid Robotics
      • Advanced Materials
      • Electric and Hybrid Vehicles
      • Engineering Logistics
    • 2ND SEMESTER: UNIVERSITY OF LJUBLJANA
      • Data modelling
      • Big data analysis
      • Information Security and Privacy
      • Assembly and Handling Systems
      • Engineering design techniques
      • Mechatronic prototyping
      • Multisensory systems, machine vision
      • Designing with non-metal materials
      • Distributed systems
    • 3RD SEMESTER: TU WIEN
      • Virtual Product Development
      • Industrial Manufacturing Systems
      • Industrial Information Systems
      • Controlling
      • Innovation Theory
      • Project Work Virtual Product Development
      • Strategic Management
      • Knowledge Management in Cyber Physical Production Systems
      • Communication and Rhetoric
      • Human Resource Management and Leadership
      • Design of Informational Systems for Production Management
      • Marketing Basics
  • e-Classroom
  • Contacts
  • Intellectual outputs

Design for Sustainability

HomeCurriculum structure1ST SEMESTER: UNIVERSITY OF ZAGREBDesign for Sustainability

Course teachers: Mario Štorga, Stanko Škec

Course objectives: Goal of the course is focusing the student to the environment and natural resources related issues caused by the product life cycle. Based on the sustainability tasks, students learn about methods and tools, and study socio-technical aspects and strategies for improvement of environment condition through eco-design.

Expected learning outcomes:

  • Estimate influence of the technical system on the environment and society.
  • Compare methods and strategies for improvement of environment state that are used during the development of technical systems.
  • Integrate criteria for sustainability in the development of technical systems.
  • Design the modes for raising awareness about the importance of sustainability and eco-design.
  • Evaluate the contribution of the research results in eco-design research field and applicability to practice.

This project has been funded with support from the European Commission.
This publication [communication] reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Copyright © 2018 Faculty of Mechanical Engineering, University of Ljubljana.