Casprod
  • About
  • Universities
    • University of Ljubljana, Faculty of Mechanical Engineering
    • University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture
    • TU Wien, Faculty of Mechanical and Industrial Engineering
  • Curriculum structure
    • 1ST SEMESTER: UNIVERSITY OF ZAGREB
      • Computer Integrated Product Development
      • Mechatronics and Sensors Sytems
      • Digital Manufacturing Systems
      • Advanced Engineering Informatics
      • Innovation Management in Product Development
      • Design for Sustainability
      • Quality Management in Engineering
      • Biomimetic Systems and Humanoid Robotics
      • Advanced Materials
      • Electric and Hybrid Vehicles
      • Engineering Logistics
    • 2ND SEMESTER: UNIVERSITY OF LJUBLJANA
      • Data modelling
      • Big data analysis
      • Information Security and Privacy
      • Assembly and Handling Systems
      • Engineering design techniques
      • Mechatronic prototyping
      • Multisensory systems, machine vision
      • Designing with non-metal materials
      • Distributed systems
    • 3RD SEMESTER: TU WIEN
      • Virtual Product Development
      • Industrial Manufacturing Systems
      • Industrial Information Systems
      • Controlling
      • Innovation Theory
      • Project Work Virtual Product Development
      • Strategic Management
      • Knowledge Management in Cyber Physical Production Systems
      • Communication and Rhetoric
      • Human Resource Management and Leadership
      • Design of Informational Systems for Production Management
      • Marketing Basics
  • e-Classroom
  • Contacts
  • Intellectual outputs
The rise of smart products
 
Casprod
Casprod
  • About
  • Universities
    • University of Ljubljana, Faculty of Mechanical Engineering
    • University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture
    • TU Wien, Faculty of Mechanical and Industrial Engineering
  • Curriculum structure
    • 1ST SEMESTER: UNIVERSITY OF ZAGREB
      • Computer Integrated Product Development
      • Mechatronics and Sensors Sytems
      • Digital Manufacturing Systems
      • Advanced Engineering Informatics
      • Innovation Management in Product Development
      • Design for Sustainability
      • Quality Management in Engineering
      • Biomimetic Systems and Humanoid Robotics
      • Advanced Materials
      • Electric and Hybrid Vehicles
      • Engineering Logistics
    • 2ND SEMESTER: UNIVERSITY OF LJUBLJANA
      • Data modelling
      • Big data analysis
      • Information Security and Privacy
      • Assembly and Handling Systems
      • Engineering design techniques
      • Mechatronic prototyping
      • Multisensory systems, machine vision
      • Designing with non-metal materials
      • Distributed systems
    • 3RD SEMESTER: TU WIEN
      • Virtual Product Development
      • Industrial Manufacturing Systems
      • Industrial Information Systems
      • Controlling
      • Innovation Theory
      • Project Work Virtual Product Development
      • Strategic Management
      • Knowledge Management in Cyber Physical Production Systems
      • Communication and Rhetoric
      • Human Resource Management and Leadership
      • Design of Informational Systems for Production Management
      • Marketing Basics
  • e-Classroom
  • Contacts
  • Intellectual outputs

Computer Integrated Product Development

HomeCurriculum structure1ST SEMESTER: UNIVERSITY OF ZAGREBComputer Integrated Product Development

Course teachers: Mario Štorga, Stanko Škec

Course objectives: The goal of the course is to use the project-based learning of integration of the research and development into business strategy of the whole corporation. The focus of the course is on organizational aspects of the product development and teamwork management, usage of computer aided tools in all phases of product development, management of information and knowledge, complexity management and product-service system paradigm introduction.

Expected learning outcomes:

  • To explore the technology state of the art for the development of technical systems.
  • To critically assess existing solutions to the technical problems.
  • To propose innovative ways to solve technical problems in technical systems development.
  • To integrate development and simulation of the technical systems and services that are related to their implementation.
  • To manage complexity in development of the technical systems.

This project has been funded with support from the European Commission.
This publication [communication] reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Copyright © 2018 Faculty of Mechanical Engineering, University of Ljubljana.